
ar
X

iv
:s

ub
m

it/
51

85
49

5
 [

cs
.A

I]
 2

0
O

ct
 2

02
3

Argument from AI summary: How does

asemantic computing differ from traditional

distributed computing?

Marius Buliga

Institute of Mathematics, Romanian Academy

P.O. BOX 1-764, RO 014700

Bucureşti, Romania

Marius.Buliga@imar.ro , mbuliga@protonmail.ch

20.10.2023

Abstract

We explain what is an argument from AI summary [7] and what is
asemantic computing [1]. As an example of such an argument from AI
summary we provide the answer given for the question in the title by the
LLM from [5].

1 Introduction

An argument from AI summary [7] aims to establish if the written communica-
tion of an idea is defective or not, by using an AI tool as a mirror which reflects
back the message sent by the human author of the idea. In order to construct
such an argument the human author asks an AI to provide a summary of the
thesis shared by the author. The summary is then checked by the author. In
the case when the author confirms the summary, then the conversation with the
AI can be used as proof that the communication of the idea is conformal with
the intentions of the author.

With such a proof, the author may argue that if (even) the AI gets the
intended message, then probably the message is clear enough for other human
readers.

Mind that an argument from AI summary does not suppose that there is an
a priori correct meaning of the message, nor that the AI tool has any under-
standing of the message. The human author inputs the message into the AI tool
then verifies that the output reflects the author’s intentions. In the case when
the author does not think that the AI tool output is conformal with the author’s

1

http://arxiv.org/submit/5185495/pdf

intentions, then such an argument from AI summary indicates that the AI tool
is not up to the task or that the author should work more on the message.

In the following is given the AI [5] answer to the question from the title and
as proof the archived answer [6]. As the author of [1], I confirm that the AI
answer uses my article in a way which corresponds well with what I intended to
communicate in [1].

2 Asemantic computing

As explained in Molecular computers which are based on graph rewriting sys-
tems like chemlambda, chemSKI or Interaction Combinators, the repository
which contains also the article [1], graph rewriting systems are a very promising
direction for building decentralized, distributed computing systems, as well as
an inspiration for real life molecular computing. Among such graph rewriting
systems we list: Lafont Interaction Combinators [2], chemlambda [3], chemSKI
[4]. Computing with such systems is local in space and time and therefore there
is no need for a global semantics, from the point of view of computation.

Classically there is a 3 stages process which uses graph rewriting. We want
to solve a problem, therefore we start from a program, or more generally from a
particular class of term rewrite systems (such as for example lambda calculus,
but not combinatory logic).

Meaning to structure: The program is then compiled to a graph. This can
also be seen as a language to structure problem. The language can be a term
rewrite system, the program can be a term, the structure can be an abstract
syntax tree. Many other examples exist, which can be put into the form of
transforming something which has a meaning (for a human), to something which
can be processed by a machine (in this case a graph).

Structure to structure: transform the initial graph into a final graph, by
using the graph rewriting system and an algorithm for the choice and order
of application of the rewrites. Usually this problem is complicated because we
want to have a good translation not only of the meaning to structure, but also of
the term reduction into graph reduction. For example, when we write a program
we expect it to ”do” something, and we would like that the execution of the
program by the decentralized machine (ie the structure to structure part) to be
a translation of what we imagine the program is doing. As an example, if our
program is a lambda term, which is compiled into a graph, we would like the
graph rewriting to be compatible with the term rewriting, ie the beta reduction
term rewriting rule. These semantic constraints which are put in the use of
graph rewriting are incompatible with decentralized computing.

Structure to meaning: transform the final graph into the language, in order
to obtain the answer of the problem. For example, if the initial program was
a lambda term, we compile it into a graph, then we reduce the graph, then we

2

translate back the final graph into a lambda term. In other examples we just
want to translate the final graph into something which has a meaning for us,
into the solution of the problem.

In all such applications of graph rewriting, we position at the level of meaning,
we descend at the level of structure, where we use graph rewriting as a tool and
then we translate back the result into a meaningful output.

In contrast with the classical approach, it is argued that distributed com-
putation with graph rewrite systems should skip the initial and final global
semantics conversion. Instead, we should regard as the natural level of compu-
tation the one called ”structure to structure”. The design of the initial structure
(if any, or if it makes sense to think about an initial global graph) could use the
step called ”meaning to structure” only as a tool which serves the structure to
structure goal. Likewise, the extraction of meaning from the main computation
part can be only based on local in space and time information. Finally, the
graph rewriting algorithm should be as well local in space and time. Such a
computation style which sits mainly at the local graph rewrite level is called
”asemantic computing” in [1].

3 The answer to the question

The conversation with the AI was started by the demand to summarize [1]. Then
the AI suggested the question from the title. In the following is reproduced the
answer to this question. The whole conversation is archived at [6].

The edits of the answer are only the replacement of the text “geeksforgeeks.org”
with [1] for the links provided in the AI answer (only the links name are changed,
all links point to [1]).

How does asemantic computing differ from traditional distributed

computing?

Answer | Phind V6 Model

Asemantic computing differs from traditional distributed computing in sev-
eral key ways:

1. Global Control and Meaning: Traditional distributed computing sys-
tems require a global control and meaning. This is because they are designed
to perform tasks that require a global understanding of the system’s state. In
contrast, asemantic computing systems do not require a global control or mean-
ing. They operate locally in time and space, without needing to understand the
overall state of the system [1].

3

2. Semantics: Asemantic computing does not have semantics, which are the
meanings of symbols in a system. This is a significant difference from tradi-
tional distributed computing systems, which rely on semantics to understand
and interpret the data. In asemantic computing, the data is processed without
any inherent meaning [1].

3. Turing Machines and Graph Rewrite Systems: Asemantic comput-
ing uses Turing machines and graph rewrite systems, which are local and do
not require global control or meaning. In contrast, traditional distributed com-
puting systems often use term rewrite systems, which are non-local and require
global control [1].

4. Confluence: Asemantic computing does not require confluence, which is
the property of a graph rewrite system where if we have a graph that can be
rewritten into one without any further possible rewrites, then this final state is
unique. This is undesirable for life-like distributed computations, where final
states are to be interpreted as death and they have to be recycled somehow by
another mechanism [1].

5. Extracting Meaning: The meaning we can extract from an asemantic
computing system is only local. In traditional distributed computing systems,
we can extract global measures of agreement and synchronization. However, in
asemantic computing, we cannot extract precise global measures of agreement
or synchronization [1].

6. Programming and Usage: Asemantic computing systems are unclear
how to program or use them in the old ways. However, they can be used as if
they are a living ecosystem, an extension of the meatspace [1].

References

[1] M. Buliga, Asemantic computing, in: chemlambda. (2022). chem-
lambda/molecular: Molecular computers which are based on graph
rewriting systems like chemlambda, chemSKI or Interaction Combinators
(v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.7306917 , [github source]

[2] Y. Lafont, Interaction Combinators, Information and Computation 137,
69–101, (1997)

[3] M. Buliga, Artificial life properties of directed interaction combinators vs.
chemlambda, arXiv:2005.06060 (2020)
https://mbuliga.github.io/quinegraphs/ic-vs-chem.html#icvschem

[4] M. Buliga, chemSKI with tokens: world building and economy in the SKI
universe, arXiv:2306.00938, (2023)

4

https://zenodo.org/records/7306917
https://github.com/chemlambda/molecular/blob/main/reading/asemantic-computing.md
https://arxiv.org/abs/2005.06060
https://mbuliga.github.io/quinegraphs/ic-vs-chem.html#icvschem
https://arxiv.org/abs/2306.00938

[5] Phind, www.phind.com

[6] Archive of Phind answers, https://archive.ph/DUsn8

[7] M. Buliga, Argument from AI summary, (2023)
chorasimilarity.wordpress.com/2023/10/01/argument-from-ai-summary/

5

https://www.phind.com
https://archive.ph/DUsn8
https://chorasimilarity.wordpress.com/2023/10/01/argument-from-ai-summary/

	Introduction
	Asemantic computing
	The answer to the question

